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LE'ITER TO THE EDITOR 

Integrals and symmetries: the Bernoulli-Laplace-Lenz 
vector 

K H Mariwalla 
Matscience, The Institute of Mathematical Sciences, Madras-600 113, India 

Received 8 June 1982 

Abstract. The notions of 'independent constants of motion' are clarified emphasising the 
role of precise definition of the background space. Using a well defined algorithm that 
relates symmetries of equations of motion of a classical system (Newtonian, Lagrangian 
or Hamiltonian) to a conserved object in one-to-one fashion, the symmetries of the 
Coulomb and linear force problems are determined. 

Prince and Eliezer (1981) have claimed to have obtained the so-called Lenz vector? 
from an analysis of the space-time dilation symmetry of the equations of motion for 
the Coulomb problem. Schafir (1981) has correctly pointed out that, dilation being 
a single symmetry, it could not give rise to n (components of a vector in n dimensions) 
conserved objects; moreover if each of the n objects is obtained separately from the 
same dilation symmetry, there is no insurance that these n objects would constitute 
components of a vector. Unfortunately, Schafir's paper is itself marred by some 
popular folklore likely to mislead. The purpose of this note is to give a relatively 
precise formulation and recall the well defined relation between symmetries and 
conservation laws (Mariwalla 1975a, b, 1980, 1981) that permit one to obtain the 
Bernoulli-Laplace-Lenz vector from a well defined invariance transformation of the 
equations of motion, showing incidentally that dilation symmetry merely gives the 
energy integral. 

A 2n -dimensional differentiable manifold M2" endowed with a closed, non-degen- 
erate two-form defines a symplectic structure (Whittaker 1961). When the two-form 
is exact, the manifold can be taken as cotangent bundle T*V of an n-dimensional 
manifold V" with the two-form w =dA =dp@dq =dpj@d4' in the local chart 
{U: q 1  . . . 4"  ; p1 . . . p"}. The symplectic structure implies that A = p  * dq and w are 
respectively relative and absolute integral invariants with respect to symplectic (canoni- 
cal) transformations (of R2"+R2") .  The integral curves of a vector field on this 
symplectic manifold admit the relative integral invariant A, if and only if these 
equations (4 = J, p = q) are of the Hamiltonian form (J = aH/ap, q = -aH/aq). A 
time-independent function of 4', pi is constant or an integral of the motion when it is 
in involution (i.e. has vanishing Poisson bracket) with the Hamiltonian function. The 
Poisson bracket of two such constants of motion is also an integral. In this manner 

I' Its prehistory involves Gibbs and Wilson (19011, Hamilton (1847), Laplace (1798), Bernoulli (1710), and 
Hermann (1710a, b) who only gives its magnitude. See for details Volk (1975), Goldstein (1976). A dot 
denotes differentiation with respect to r, r = 1x1 = 141; summation conventions of Einstein and vector notation 
are employed; d is exterior derivative. 
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one may obtain several such integrals. How many independent integrals exist depends 
on the precise definition of the term ‘independent’ and has been a source of confusion. 
In a 2n-dimensional manifold there can clearly be no more than 2n algebraically 
independent functions. Hence, in that sense there are at most 2n ‘essentially new’ 
integrals. This view of independence is perhaps not very useful, as one usually also 
requires the integrals to be single valued (Landau and Lifshitz 1960). As noted by 
Wintner (1941), even this criterion is not really effective in singling out ‘useful’ integrals 
or weaning out the ‘worthless’ ones; he introduces the notion of ‘isolating’ integrals, 
for which however, there is no precise mathematical characterisation. An alternative 
view is that the integrals are independent in the sense of a Lie algebra. Thus for a 
harmonic oscillator, the symmetry group of the Hamiltonian is SU(n) giving in all n 2  
integrals, including the Hamiltonian function. That this is the maximum follows from 
the fact that at a point in configuration space there can be at most n linearly independent 
vectors, involving in all n 2  numbers (Mariwalla 1980). Of these however only 2n 
(including the Hamiltonian) are functionally independent. In practice the determina- 
tion of functionally independent constants can be a source of confusion on a different 
account, requiring careful attention to the geometry adopted. We illustrate this for 
the problem X + KX = 0.  If this is considered as a problem of linear force on a 
Euclidean background space, its symmetry is that of GL(n, R ) ,  giving rise to n 2  
integrals which give in turn the Lie algebra of GL(n, R )  or U(n) according as -K B 0. 
But one may also consider this equation to be that of a geodesic on a space of constant 
(Riemannian) curvature K 5 0. In that case the symmetry of the equations of motion 
is an (n + 2nl-parameter group of projective motions on a space of constant curvature. 
The acceptance of this curved space metric implies the a priori use of the energy and 
angular momentum integrals of the flat background space problem. For instance with 
the constant curvature metric 

(1) X2 + E ( X  *X)’/(l -EX’)  = K/Em, 

X + X + U [ ( l - E X  2 ) 1 / 2 -  EX’uf(a) ] ,  

sgn E = sgn K ,  

the equation m X  + KX = 0 is invariant under the isometry 

( 2 )  

and gives the conserved vector (I = X  ~ p ,  p = d) 
A = ( p -  EX A 1)(1  EX^)-^'*. (3) 

Since this involves the a priori conservation of energy and angular momenta and there 
is a square root, its expression in terms of flat (background) space integrals presents 
problems. 

Again, let X = Y +A, such that 

Y + KY + KA = 0, dA/dt = 0. (4) 

A solution of these equations corresponds to the Lagrangian 

L = Y 2 / 2 R  - KR/2 R =lYI. 
Constants of the motion A = - Y YY + f( Y2 + KR) Y and L = Y A Y together give 
the Lie algebra of SO(4) or SO(3,l) depending on the sign of K.  Thus we see that 
it is insufficient to consider the problem of independent constants of a given equation 
of motion without a complete specification of the geometry under consideration. 
Incidentally, these examples take us to the heart of the problem of ‘inequivalent 
Lagrangians’, showing that much of the confusion in the literature can be traced to 



Letter to the Editor L469 

the total disregard of the definition of the nature of the background space on which 
the given physical problem is defined. In other words, given a differential equation 
in a local coordinate system, one cannot make much of it unless something definite 
is specified about the background space. Once a background space is specified, a 
subset of symmetries admitted by this space which leave equations of motion 
unchanged may be taken as the symmetry group of equations of motion. Then by an 
algorithm one obtains the corresponding conservation laws, which are in all S n  in 
number if time independent. 

The relation between symmetries of equation of motion and conservation laws is 
by now rather well defined (Mariwalla 1975a, b, 1980, 1981), bringing within its fold 
all the so-called 'accidental' or 'hidden' symmetries. These symmetries may be 
considered in Newtonian, Lagrangian or Hamiltonian formulations. 

Let f = F(X, X, t)  be a Newtonian equation of motion. Consider the infinitesimal 
change X + X +e& dt + dt(1 +E&,) leaving the equations of motion unchanged. One 
finds after a little algebra the expression 

2 

A=&-&&, A = 1 .f -2 .S-2&$'. (6) 
If the equation of motion is invariant under this transformation, the left side will be 
zero; if further F = -Vd(r) ,  all but A will vanish, giving A as constant of the motion?. 
In particular, for the potential 4 = at', Newton's equations are unchanged under 
dilation of space-time, and the corresponding conserved object is 

A (dilation) = energy. (7) 
Because of this, dilation symmetry cannot give rise to yet another integral. In the 
case of the linear force problem in flat space, the equation of motion is unchanged 
under linear transformations. For the transformations X' +Xj + &jkXk, &jk = E ki, we 
find A=&jk(pjpk+&X,Xk) as the conserved object. For the case of the Coulomb 
problem q5 (r) = &/r ,  a symmetry transformation of Newton's equation is 

x+x(l+c-x)-', dt+dt (1 +C *X)-'. (8) 

A = C [X p p  - (p' + r$)X], 

One finds on substitution into the second of equations (6) 

(9) 

which may be recognised as the Bernoulli-Laplace-Lenz vector. We note that (8) is 
indeed a point transformation of R" + R" (though not of R"+'+R"+'), 't' being 
merely a parameter along the curve (R + R") in R". In this connection we note that 
the equation U *Vu =Du/dt =au defines for each different function a a set of 
vectors that are parallel relative to a curve (R + R "): Xi = rpi(t), in the sense that they 
have the same direction; thus Z = U exp(j'ct dt) gives DS/dt = 0. If U = dX/dt is a 
tangent to a curve and dX/dT is a unit tangent vector (D(dX/dT)/dT=O) then 
d T  = dt(exp j 'a dt). This transformation (dt + dT) does not change the nature of the 
curve or effect a coordinate change, but merely renormalises the magnitude of the 
vector in the wake of the 'point (coordinate) transformation'. Hence, when the change 
dt + d T  is effected along with the point transformation, it does not change the nature 

t When A = 0, and the symmetry is a space-time isometry, A = dn/dt and n is a constant of motion. 
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of the point transformation. We emphasise that the relationship between symmetries 
and conservation laws enunciated above is independent of any a priori appeal to the 
Lagrangian formulation. 

According to D’Alembert’s principle, the work of the constraint force on any 
virtual variation is zero, 

( m X  + VC$ ) 6 dt = 0. 

Since one may conceive of a symmetry vector 6 (of the equation of motion) to define 
constraint on the system, one obtains the conservation laws of linear and angular 
momenta and energy as arising from isometries (space-time rotations and translations 
for flat space) of the background space-time. An extension of this principle is obtained 
by considering its ‘lift’ to the ‘space of tangents’: 

A little algebra immediately leads to the result that corresponding to the symmetry 
change (6, ko) there exists a conserved object 

t 12) 

as before (see equation (6)). In as much as D’Alembert’s principle is a precursor of 
Hamilton’s principle and expression (lo) refers to the first variation SL (when a 
Lagrangian exists), the expression (1 1) would refer to the Euler equation of the second 
variation S2L and to the Jacobi (variational) equation of the Euler-Lagrange equation 
(i.e. an equation satisfied by the difference between neighbouring extremals). These 
statements include a generalisation of Noether’s theorem, the detailed treatment of 
which is well outside the scope of this note. 

In the Hamiltonian formulation one envisages an infinitesimal transformation 
q + q + E& p * p + ep leaving the Hamiltonian equations unchanged; one obtains 

A = j .  2 - 6 .  X _- 2 6 a 2 ,  

For H, & , i o ,  f i  independent of explicit dependence on t, SH is a constant of the 
motion. One verifies that the non-canonical transformation with generators 

6 = c -94, & = - 2 c * q ,  p = c . q p - c . p q  (14) 

for the Coulomb problem yields in SH = E A the expression of the Bernoulli-Laplace- 
Lenz vector. The same result obtains if one instead varies the Euler-Lagrange 
equations. The infinitesimal changes equation (14) are easily checked to correspond 
to the finite form, equation (8). 

To conclude, we have shown that for every symmetry of an equation of motion 
of a classical mechanical system (whether in Newtonian, Lagrangian or Hamiltonian 
formulation) there is a well defined algorithm which gives the related constant of the 
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motion. Thus dilation symmetry gives energy conservation and the symmetry equation 
(8) for the Couloinb problem gives the Bernoulli-Laplace-Len2 vector. We have also 
shown that there are at least two possible notions of ‘independent constants of motion’, 
namely algebraic or Lie algebraic, and that there is a further complication if one is 
not careful to define precisely the nature of the background space used. 
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